HUMAN MADE ig的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到附近那裡買和營業時間的推薦產品

HUMAN MADE ig的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦陳冠名,楊智民寫的 我的第一本格林法則英文單字魔法書:全國高中生單字比賽冠軍的私密筆記本,指考、學測、統測、英檢滿分神之捷徑 和StephenBlack,JohnDixon,楊智民,蘇秦的 地表最強英文【英語會話12,000/用「格林法則」背10,000個英文單字】【網路獨家套書】都 可以從中找到所需的評價。

另外網站不只是日系潮牌,Human Made 的美式復古DNA 你穿懂了嗎?也說明:不過,Human Made 除了以一個紅色心心起家外,品牌的設計基因你又知多少? Nigo 事業第二春. Credit to Instagram @nigo ...

這兩本書分別來自凱信企管 和我識所出版 。

淡江大學 歐洲研究所博士班 張兆恬所指導 徐彪豪的 歐盟被遺忘權發展及其影響 (2021),提出HUMAN MADE ig關鍵因素是什麼,來自於歐盟、被遺忘權、去列表權、隱私、資料保護、網路治理、刪除權、域外效力。

而第二篇論文長庚大學 電子工程學系 賴朝松所指導 Mamina Sahoo的 基於石墨烯及生物碳基材料的可撓式電晶體應用與能量攫取 (2021),提出因為有 石墨烯、氟化石墨烯、太阳能电池、摩擦纳米发电机、生物碳、能量收集器的重點而找出了 HUMAN MADE ig的解答。

最後網站帶你看遍品牌主理人們的社群習慣則補充:趁著Instagram 大當機,帶你看遍品牌主理人們的社群習慣 ... 值得一提的是,NIGO 現為HUMAN MADE 主理人,前為BAPE 主理人,而現今在標記NIGO 的貼文 ...

接下來讓我們看這些論文和書籍都說些什麼吧:

除了HUMAN MADE ig,大家也想知道這些:

我的第一本格林法則英文單字魔法書:全國高中生單字比賽冠軍的私密筆記本,指考、學測、統測、英檢滿分神之捷徑

為了解決HUMAN MADE ig的問題,作者陳冠名,楊智民 這樣論述:

狂賀!!格林法則魔法學校團隊全力打造的首部曲,108年統測單字百分百命中率!     神準的預測劍指接下來的指考與學測,希望幫助讀者以省力又有效的方式,找到考試範圍的重點,得以在這波教改浪潮中,乘風破浪,航向成功的彼岸,加入學霸的行列。     格林法則權威莫建清教授、印歐詞根權威謝忠理博士兩大權威 用力推薦   台大學霸、醫界學霸 齊聲說讚      字根首尾分析神人陳冠名+格林法則研究專家楊智民,   格林法則魔法學校兩大名師合體嘔心瀝血鉅作,掀起新一代單字學習風暴!   →聚焦精準,囊括7000必考單字、歷屆考試重要單字,考題命中率高    →

指考、學測、統測、英檢,滿分神之捷徑   →台大學霸、醫科學霸、英文學霸直達車   英文單字比賽最強王牌教練 魏延斌◎審訂   ★萬眾矚目:本書作者指導學生暨全國高中學校單字冠軍 莊詠翔 滿分實證     嚴選388個字根首尾,涵蓋7000單字,學習以字根首尾為經,格林法則轉音為緯,再搭配獨創的「神隊友」記憶法則,即可用簡單字來串聯整合同源難字或詞素,達到「字以群記」、「識字辨義」的成效。先有詞素,再學轉音,即使不熟悉格林法則,亦能輕鬆入門,有效學會上萬個單字,實為字根首尾學習的一大突破!   ★★《我的第一本格林法則英文單字魔法書》有別於他書的4大優勢★★  

 1.作者獨創6大轉音模式,7大魔法強化記憶策略:市面上唯一以轉音統整詞素學習模式,加諸神之捷徑、秒殺解字、源來如此等等強化記憶單元,幫助學習者迅速理解單字用法、同反義字……記憶單字快又有效。   2.聚焦最精準:精選重要詞素,衍生單字量大,涵蓋7000單字、歷屆考試重要字彙;囊括必考單字,考題命中率高(108年5月統測單字百分百命中率)!   3.字源考據量、單字拆解量最大:比市面上的所有書籍單字拆解量多,同時,考據精準、詳盡,能提供最正確的知識和學習架構。   4. 只要購買此書,可免費加入《格林法則魔法學校》臉書社群,並獲贈近二十年學測、統測、指考歷屆試題電子檔(按本書字根首

尾分類)。     格林法則魔法學校正是集合全世界格林法則、構詞學和字源學高手一起切磋、學習的地方。我們會舉更多的實例來驗證格林法則的威力,並提供你正確的單字學習法,消除你對於單字記憶的抗拒。在格林法則魔法學校,我們不只要當一堂課的同學,還要成為一輩子的朋友!   【本書特色】   一、字源考據嚴謹深入,立論有憑有據;以理解取代死背,單字記得更多更牢。   二、破除坊間書籍常見謬論,導正錯誤用法,最貼近真實語用。   三、涵蓋7000單字,有助攻克指考、學測、統測、英檢等大型標準化測驗。(最新實證:統測單字百分百命中率!)   四、獨創轉音統整詞素,記憶由簡入繁,學

習更輕鬆有效率。   五、排版層次分明,字根首尾按字母順序排序、標粗體,類似課堂筆記方式呈現,符合學習邏輯,快速擴充單字量。   六、不須老師逐字講解,適合學生自學,翻轉傳統教學。   七、收錄英語母語人士發音,建立快捷索引,方便查找。   【本書重點】   ▍獨創格林法則6大轉音模式統整字源,單字好學易懂記得住   作者就「格林法則」的精神,獨家提出「轉音六大模式」,貫穿分類詞素,把同源字統整在一起,由簡入繁,即能輕鬆有趣地擴充單字量;不懂轉音都能學,加了轉音,統整字源,就能學更多。     ▍7大魔法記憶單元,多元管道攻克單字   1. 神之捷徑:簡介該

單元字根首尾詞素與定義,再以創新的「神隊友」記憶法,引導讀者用簡單字來連結複雜單字或詞素。   Ex:可用tooth當神隊友,d/t,t/θ轉音,母音通轉,來記憶dent,皆表示「牙齒」。(例:dentist牙醫;dental牙齒的)。   2. 秒殺解字:有別一般書籍,《我的第一本格林法則英文單字魔法書》提供字根首尾更詳盡、深入的單字拆解和解釋,以利聯想,達到快速記憶的目的。   Ex:ambiguous(含糊不清的、模棱兩可的)   秒殺解字 amb(=ambi=around, both)+ig(=ag=drive)+u+ous → 整天「到處」「開車」「浪流連」(wan

der, go about, go around),就像一個浪子永遠不知道要回頭,不知道人生目的是什麼,引申為「含糊不清的」、「模棱兩可的」。     3. 源來如此:提供品牌知識,並解析同源字,達到字以群記,並能貼近生活的目標。   Ex:wagon和vehicle可一起記憶,v/w對應,母音通轉,核心語意都是「運輸工具」。德國知名品牌Volkswagen(福斯汽車,縮寫VW),德文念成 [ˋfolksvægən],f/v轉音,v/w對應, Volks表示「人民」(folks),wagen表示「車」(wagon),意即是「人民的汽車」。由此可證,很多英文字來自德文,特別是w/v/

f的互換。     4. 字辨:解釋語意接近的單字,或者是容易混淆的單字,讓讀者更能清楚明白、辨識字詞差異,用字更精準。   Ex:從字源的角度來看,probable發生機率較高,約80%,字面意思指「試驗」後,發生或成功的機率很大;possible的字面意思指「有能力的」,發生機率較低,約20%。     5. 延伸補充:提供單字更多的使用方法、片語、字詞搭配等等,廣拓更多相關知識。   Ex:(1) disaster area災區    (2) natural disaster 天災   (3) nuclear disaster 核災    (4) be

a complete/total disaster 徹底的失敗     6. 英文老師也會錯:破解坊間書籍普遍存在的錯誤論述,建立正確字源論述和字詞用法。   Ex:坊間書籍和網路幾乎都會犯一個錯誤,把surroud和round, around歸類 在一起,但事實上它們並不同源。     7. 源源不絕學更多:利用相同的學習架構,學習更多相關同源字,輕鬆擴充字庫無上限。   Ex:cyber addict (phr.網路成癮症患者)、cybershopper (n.網路購物者)、cybercrime (n.網路、電腦犯罪)、cyberwidow (n.電腦寡婦)、cy

berterrorist (n.網路恐怖分子)、cyberterrorism (n.網路恐怖主義)、cyberwar (n.網戰)、cyberwarfare (n.網戰)、cyber-warrior (n.網軍)。     ▍大量考據,坊間之最!學習最準確的字源及用法   《我的第一本格林法則英文單字魔法書》全書的所有字源,參考資料遍及國內外知名字源字典與大師作品,爬梳語言歷史、考據字詞用法,提供學習者最正確的學習知識,堪稱市面上考據最嚴謹的單字學習書。     ▍單字書大突破!字根首尾按字母順序排序並粗體標示,易於辨識,加深印象   必學388個字根首尾,特別以目前學習書

罕見的字母順序排序及標粗體方式處理,除幫助學習者加深對字根首尾的印象,連帶強化用字根首尾記憶單字的功能。同時,藉由字根首尾記憶7000 單字及歷屆考試重要字彙,有助學習者攻克學測、指考、統測、英檢等重大考試。     ▍特別收錄單字索引,按字母查找單字更方便   所有單字,全部按字母排序索引,不論遇到哪一個生字,隨時都可以快速搜尋查找。     加拿大自然醫學博士 王永憲   中國醫藥大學醫學院教授 蔡崇豪   臺灣首席諮商心理師 佛洛阿水     元輔法律事務所律師 洪巧玲   南國春秋法律事務所律師 王展星   啟碁科技公司經理 陳俍鈞        

                 臺大學霸/醫界 聯名推薦      國立彰化高中圖書館主任 呂興忠   字神帝國英語講師 派老師   教科書、英文學習叢書作者 黃百隆   《大考寫作A攻略》作者 廖柏州    國立嘉義大學通識課程教授 蔡榮捷    兩岸英語學習暢銷書作者 蘇秦                                                                                                      學術界/補教業 專業推薦

HUMAN MADE ig進入發燒排行的影片

很多資深熊迷發燒友都說熊沒有完美無瑕的,所以就來檢測一下,來開箱5隻全新未拆的熊,看一下是不是真的每隻熊都有原廠瑕疵!

*歡迎訂閱我們的生活新知影片並開啟小鈴鐺:
⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
髮妝霓室
髮型設計師:阿樂
預約專線0989584214
Line iD:cutti0506
⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
髮妝霓室
髮型設計師&彩妝設計師:小佩
預約專線0989584216
Line iD:cutti1122

髮妝霓室髮型代言人:
壹加壹
https://www.youtube.com/channel/UCmAr...

*歡迎追蹤 魔王的碗公 獲得更多美食旅遊新知。
*追蹤我們的 IG: https://www.instagram.com/monster.neon/
魔王的碗公 文章:https://bibilo0506.pixnet.net/blog​​​​
魔王的碗公 粉專:https://www.facebook.com/monsterpeipei
我們髮型工作室''髮妝霓室‘’:https://www.facebook.com/bibi0989584214

歐盟被遺忘權發展及其影響

為了解決HUMAN MADE ig的問題,作者徐彪豪 這樣論述:

妳是ig限動上的妳?FB上朋友眼中的妳?還是Dcard版上被討論的你??Linkedin上的你??隔壁班同學、隔壁棟上班族眼中的妳?還是每天下班後面對鏡子、家人的自己??在手持裝置與網路佔據幾乎醒著的每一刻的今天,我們每個人每分每秒都在虛擬的世界留下無數的足跡。然而與人類自然遺忘的功能不同的是,電磁紀錄只要有足夠的空間就會一直記得、幫你我記得。但真實世界的我們也許不希望自己、甚至不認識的陌生人,都能藉由無遠弗界的網路了解我們自己都想忘卻的過去。2014年5月13日,歐盟法院(Court of Justice of the European Union)針對沸騰已久的《Google Spain

SL, Google Inc. v. Agencia Española de Protección de Datos》(以下簡稱《Google Spain案》) 做出判決。該判決 對於原來1995年歐盟個人資料保護指令(Directive 95∕46∕EC,以下簡稱個資保護指令) 的保護範圍做出解釋,媒體並認為此為「被遺忘權」(the right to be forgotten) 的確立。本論文的研究聚焦在被遺忘權做為一種可能的權利形式在歐盟層級的發展觀察分析,期待透過更深入地介紹被遺忘「權」在歐盟包括相關司法實務的發展背景,包括2014年《Google Spain》前過往資料保護與隱私的相

關案例分析,以及其後被冠上被遺忘「權」的相關案例介紹,釐清現行歐盟法院是否已具備形成被遺忘「權」與網路平台實務在執行去列表權請求決定時之判斷標準。除緒論與結論外,區分為被遺忘權學理基礎、歐盟被遺忘權案例發展、歐盟資料保護立法的被遺忘權、被遺忘權在歐盟層級以外影響等部分。在被遺忘權學理基礎的部分,特別從隱私、資料保護與資訊隱私這些被遺忘權的法理基礎,介紹2003年的《Lindqvist案》、2012年的《Van Honnver 2號案》、《Gardel v. France》,希冀讓讀者理解被遺忘權的判決並非完全憑空出現,也透過對於過去歐盟相關案例是如何開展,期許對於未來又該如何推進的方向能有更全

面的參考基礎。在歐盟被遺忘權案例發展的部份,則除了介紹前述《Google Spain》案、《Leece v. Manni》案,以及《Google LLC v. CNIL》案外,並就歐盟機構所公布的政策文件,諸如2011年ENSIA報告與2014年「第29條工作小組」專家指導意見做說明。同時,針對《Google Spain案》後歐盟被遺忘權的執行現況,以Google在2015年所發布的專家獨立報告、2017年所公開的透明性報告為例作為各界反應的補充。在歐盟資料保護立法的被遺忘權的部份,則先從成文法的部分出發,介紹《Google Spain案》宣判當時有效、同時也是現今歐盟資料保護法制主要奠基基礎

的歐盟個人資料保護指令,簡述其架構。再依時序介紹後來在2012年由執委會提出、2016年由歐洲議會通過的歐盟歐盟一般資料保護規則的生成背景,與其中和被遺忘權有關之條文。透過兩者介紹讓我們更能理解歐盟被遺忘權的司法實務法展原本的架構背景與相應的立法發展。在被遺忘權在歐盟層級以外影響,則以兩個面向為觀察,其一是檢視被遺忘「權」在法國作為歐盟會員國的在2014年《Google Spain案》後開展及,從Google作為搜尋引擎產業為例,就其所公布的透明性報告《Google Spain案》,分析去列表權在現今真實的實踐樣貌。希冀透過上述文件材料的梳理達成以下目的:(一)探尋歐盟被遺忘權的發展基礎;(二

)觀察被遺忘權在歐盟作為可能權利形式的發展脈絡,透過彙整與歐盟被遺忘權相關影響與探討在法規與判決的演進,包括在2014年前《Google Spain》案前的歐盟法院以及歐洲人權法院(European Court of Human Rights)判決等,釐清現行歐盟法院與網路平台實務決定被遺忘權行使請求之判斷標準

地表最強英文【英語會話12,000/用「格林法則」背10,000個英文單字】【網路獨家套書】

為了解決HUMAN MADE ig的問題,作者StephenBlack,JohnDixon,楊智民,蘇秦 這樣論述:

「不是最強,不敢大聲!」 「不是最強,不敢大聲!」 「不是最強,不敢大聲!」 因為我們很有把握, 所以說三遍!   《地表最強英語會話12,000》 ──   是誰規定想學好單字就得買:   7,000、10,000,甚至20,000的單字書!   是誰說想擺脫只會說:「How are you?」、「Sorry, I don’t know.」   卻只買3,000、5,000甚至7,000句的會話書,就能逆轉人生?   讓我們在此大聲指出大家學英文的盲點:   「單字」和「會話」其實是要一起學,   而且「一定」要一起學!   《地表最強英語會話12,000》──   

讓你一次擁有12,000會話句、25,000組單字/片語,   挑戰英語人生無極限!   (保證足量12,000句會話、25,000個單字/片語。)   (沒有足量,不敢大聲)   有了這本,你還怕什麼?   178個情境,完整的12,000句英語會話句,並可延伸至25,000句。全書再補充超過25,000個單字/片語。有了這本書,任何時間、任何時點、任何考試、任何情境都不用害怕!   不是最強,不敢大聲!──   最強1│地表最多的英語會話句   全書分為15篇章,共178個單元,每單元有90-100句的英語會話句,絕對超過12,000句,不僅收錄你想的到的英語會話句,連意想不到的會話

句,在這裡一定都找的到!   最強2│地表最多的補充單字+片語   書中的每一句英語會話句,皆補充2-3組的英語單字或片語,全書超過25,000個單字/片語。一本即可抵過2,000、7,000,甚至10,000英語單字書。   最強3│地表最豐富的英語替換句   有些英語會話句,會有2-3種不同的說法,但都表達相同的意思。學一句等於學三句,靈活運用英語會話句,跟老外溝通無須再比手畫腳、支支吾吾。   最強4│錄製時間最長的英語會話MP3   12,000句英語會話句由外籍教師親自撰寫及錄製,錄製時間長達21小時。不想帶厚重的書出門,有MP3即可隨聽隨練,說一口流利且標準的英語。   不

僅只是「英語會話書」,更是一本「英語單字書」!   一定會遇到的情境都在這裡!   全書15篇章,囊括178個單元,收錄各類生活中會一定會遇到的情境主題,分類主題最為詳盡,隨手一翻,馬上找到你想要的那個情境。   一定要會的會話句都在這裡!   完整的12,000句英語會話句,搭配相關英語句可延伸25,000句,善用替換詞彙,更能變化出屬於你的25,000句,甚至100,000句,遇到老外隨機應變不詞窮。   一定要懂得字彙都在這裡!   還再買2,000、7,000的單字書嗎?那些單字書已經不夠看,選對一本英語會話書,立即擴充你的單字量,12,000句的會話句,衍生25,000 個單字

,學習效果保證完勝。   《地表最強英文單字:不想輸,就用「格林法則」背10,000個英文單字》──   「不想輸,就把英文學好吧!」   根據統計,   67%的上班族認為:英文是提升職場競爭力最直接的方法!   他們同時認為,   學習英文的第一步,   就是先從擴充單字量下手!   但是,   「單字背不起來」、「總是背了又忘」   卻是他們共同的困擾!   《地表最強英文單字:不想輸,就用「格林法則」背10,000個英文單字》   教你用「格林法則」,   了解「字首、字根、字尾」的轉音與演變!   以腦海中現有的單字,   搭配「格林法則」及「字首、字根、字尾」記憶法,  

 瞬間擴充你的單字庫,   讓你背7,000、10,000、甚至10萬個英文單字!   「格林法則」為什麼能成為74億人狂推的單字記憶法?   1.什麼是「格林法則」?──   「格林法則(Grimm’s law)」又稱「第一次子音推移」,是一種用來描述印歐語語音遞變的定律,由德國語言學家雅各布‧格林(Jakob Grimm)提出。利用英文的形、聲、義,找出簡單字彙如何演變成艱深單字的方法,推翻以往用字母順序記憶單字的古板方式。   2.「格林法則(Grimm’s law)」利用英文單字的根本-「形、聲、義」,找出簡單字彙與艱深單字的相對應關係,幫助學習者方便記憶。   例:字根「com

-」表示「一起」;「pan」由「bun(麵包)」演化而來。   字根「com-(一起)」+「pan(麵包)」+「-ion(名詞字尾)」=「companion(一起吃麵包的人)」,引申為「同伴」。   3.運用「格林法則」及「字首、字根、字尾」,讓記憶單字「以簡入繁」!   例1:「sit」與字根「sid-」皆表示「坐」。   字根「pre-(在~之前)」+「sid-(坐)」+「-ent(人)」=「president(坐在你前的人)」,引申為「總統」。   例2:字根「-corn」和「-horn」皆表示「角」:   字根「uni-(單一)」+「-horn(角)」=「unicorn(獨角獸)」。

  4.「格林法則」讓「字首、字根、字尾」變得更靈活運用!   例1:字根「tour(旅遊)」源自「turn(轉)」,兩者皆有「轉」的意思。   字根「tour(旅遊)」+「-ist(表示人)」=「tourist(旅遊的人)」,引申為「觀光客」。   例2:「wine(酒)」由法文的「vin(酒)」演化而來。   字根「vin-(酒)」+「-egar(酸)」=「vinegar(醋)」。   以前學過的單字,   透過「格林法則」及「字首、字根、字尾」記憶法,   讓記憶單字「以簡入繁」!   【使用說明】   淺談「格林法則」│   「格林法則(Grimm’s law)」又稱「第一次子

音推移」,是一項用來描述印歐語語音遞變的定律,由德國語言學家雅各布‧格林(Jakob Grimm)提出。相關的「格林之前容易混淆的「字首、字根、字尾」,輕鬆記下。   「格林法則」發音位置│雙唇音:﹝b﹞、﹝p﹞、﹝m﹞   ﹝b﹞、﹝p﹞、﹝m﹞的發音相似於注音符號的:ㄅㄆㄇ。   ﹝p﹞對應﹝b﹞│purse - burs   「purse」指皮革製的囊袋,主要用途是裝錢;「burs」這字根也具有相同概念,可指袋子、囊、付錢等概念。   ﹝b﹞對應﹝m﹞│black - melan   透過雙唇音﹝b﹞和﹝m﹞互換,藉由簡單的「black(黑)」可輕鬆記憶字根「melan(黑)」的意思

。   「格林法則」發音位置│唇齒音:﹝f﹞、﹝v﹞   ﹝f﹞、﹝v﹞的發音相似於注音符號的:ㄈ。   ﹝v﹞對應﹝f﹞│love - phil   兩者並無字源關係,但皆表示愛。可將「phil」倒過來拼字,形成「liph」的組合,和「love」相對照,藉由﹝v﹞和﹝ph﹞互換,母音通轉等概念能簡單記憶「phil」的意思。   ﹝f﹞對應﹝v﹞│different - var   兩者雖無字源關係,但字根「var」即表示改變、不同,透過子音﹝f﹞和﹝v﹞互換,母音通轉,用「different」來記憶「var」的意思。   「格林法則」發音位置│齒齦音:﹝d﹞、﹝t﹞、﹝n﹞、﹝l﹞、﹝

r﹞、﹝z﹞、﹝s﹞   ﹝d﹞、﹝t﹞、﹝n﹞、﹝l﹞、﹝r﹞、﹝z﹞、﹝s﹞的發音相似於注音符號的:ㄉㄊㄋㄌㄖㄙ。    ﹝t﹞對應﹝d﹞│tame - dom   子音﹝t﹞和﹝d﹞互換,母音通轉,「tame」是馴服的,「dom-」是家,有一派字源學家推測,像狗、貓這樣的動物是經馴服,才能養到家中。   ﹝s﹞對應﹝t﹞│plus - plut   兩者雖無字源上的關係,但可藉由子音﹝s﹞和﹝t﹞互換,母音通轉來記憶,「plus」的意思是更多,「plut」是財富,可想像成財富是累積來的、愈來愈多。   ﹝r﹞對應﹝l﹞│star - stell   子音r和l互換,母音通轉,「star

」和「stell」皆表示「星星」。   (以下內容還有「齒齦後音」、「齒間音」、「硬顎音」、「軟顎音」、「喉音」……等)

基於石墨烯及生物碳基材料的可撓式電晶體應用與能量攫取

為了解決HUMAN MADE ig的問題,作者Mamina Sahoo 這樣論述:

Table of ContentsAbstract.......................................................................................................iFigure Captions........................................................................................xiTable Captions...................................................

....................................xxiChapter 1: Introduction1.1 Flexible electronics................................................................................11.2 Graphene the magical material ………………………….……….......21.2.1 Synthesis of graphene…………………………….….…...21.2.1.1 Mechanical exfoliati

on of graphene………………...……21.2.1.2 Epitaxial growth on Sic substrate………………….…..31.2.1.3 Chemical vapor deposition (CVD) method………….…..41.2.2 Graphene transfer…………………………………………....41.3 Application of graphene based Electronics……………………….......51.3.1 Graphene based flexible transparent electrode

……………….61.3.2 Top gated Graphene field effect transistor…………………….71.4 Challenges of flexible graphene based field effect transistors.……….91.5 Energy harvesting devices for flexible electronics………….........….91.6 Solar cell…………………………………………………………...101.6.1 Device architecture…………………………………………101.

6.2 Issues and Challenges of Perovskite solar cells………...121.7 Triboelectric nanogenerator (TENG)………………………………121.7.1 Working mode of TENG………………………………….141.8 Applications of TENG………………………………………………151.8.1 Applications of graphene based TENG…………………....151.8.2 Applications of bio-waste material ba

sed TENG………….171.9 Key challenges of triboelectric nanogenerator…………………....…191.10 Objective and scope of this study………………………………....19Chapter 2: Flexible graphene field effect transistor with fluorinated graphene as gate dielectric2.1 Introduction………………………………………………………....212.2 Material preparation a

nd Device fabrication………………. 232.2.1CVD Growth of Graphene on Copper Foil………………….232.2.2 Transfer of graphene over PET substrate……………...........252.2.3 Fabrication of fluorinated graphene ……………...........252.2.4 F-GFETs with FG as gate dielectric device fabrication……262.2.5 Material and electrical C

haracterization …………………272.3 Results and discussion…………………………………………….282.3.1 Material characterization of PG and FG……………...…...….282.3.2 Electrical characterization of F-GFET with FG as dielectrics..332.3.3 Mechanical stability test of F-GFET with FG as dielectrics ….362.4 Summary…………………………………………………

………....40Chapter 3: Robust sandwiched fluorinated graphene for highly reliable flexible electronics3.1 Introduction………………………………………………………….423.2 Material preparation and Device fabrication ………………….........443.2.1 CVD Growth of Graphene on Copper Foil…………………...443.2.2 Graphene fluorination …...…….…………

…………..............443.2.3 F-GFETs with sandwiched FG device fabrication....................443.2.4 Material and electrical Characterization…..............................453.3 Results and discussion ……………………………………...............453.3.1 Material characterization of sandwiched…………………….453.3.2 Electric

al characterization of F-GFET with sandwiched FG....473.3.3 Mechanical stability test of F-GFET with sandwiched FG…503.3.4 Strain transfer mechanism of sandwiched FG………………513.4 Summary…………………………………………………………....53Chapter 4: Functionalized fluorinated graphene as a novel hole transporting layer for ef

ficient inverted perovskite solar cells4.1 Introduction………………………………………………………….544.2 Material preparation and Device fabrication......................................564.2.1 Materials ………………………...…………………………564.2.2 CVD-Graphene growth ……………………………...…...564.2.3 Graphene fluorination …………………………………….564.

2.4 Transfer of fluorinated graphene…………………………...574.2.5 Device fabrication …………………………………….….574.2.6 Material and electrical Characterization …….....................584.3 Results and discussion …………………………………………….594.3.1 Surface electronic and optical properties of FGr……….….594.3.2 Characterization o

f FGr and perovskite surface ……….…644.3.3 Electrical performance of PSC………………….…….…...694.3.4 Electrical performance of Flexible PSC……………………724.4 Summary…………………………………………………………...78Chapter 5: Flexible layered-graphene charge modulation for highly stable triboelectric nanogenerator5.1 Introduction…………

…………………………………………....795.2 Experimental Section……………………………………………….825.2.1 Large-area graphene growth ……………………………….825.2.2 Fabrication of Al2O3 as the CTL …………………………...825.2.3 Fabrication of a Gr-TENG with Al2O3 as the CTL………825.2.4 Material characterization and electrical measurements…….835.3 Results

and discussion.…………………………………...…………845.3.1 Material Characterization of Graphene Layers/Al2O3……845.3.2 Working Mechanism of Gr-TENG with Al2O3 as CTL…915.3.3 Electrical Characterization of Gr-TENG with Al2O3 CTL…945.3.4 Applications of the Gr-TENG with Al2O3 as CTL……….1015.4 Summary…………………………………………

……………….103Chapter 6: Eco-friendly Spent coffee ground bio-TENG for high performance flexible energy harvester6.1 Introduction…………………………………………………….......1046.2 Experimental Section…………………………………………….1086.2.1 Material Preparation …………………………………….1086.2.2 Fabrication of SCG powder based TENG………………...1086

.2.3 Fabrication of SCG thin-film based TENG ………………1096.2.4 Material characterization and electrical measurements….1106.3 Results and discussion.…………………………………...………1116.3.1 Material Characterization of SCG powder and thin film….1116.3.2 Working Mechanism of SCG-TENG……………………...1186.3.3 Electrical Cha

racterization of SCG-TENG……………….1226.3.4 Applications of the SCG thin-film based TENG………….1326.4 Summary………………………………………………………….134Chapter 7: Conclusions and future perspectives7.1 Conclusion………………………………………………………....1357.2 Future work …………………………….………………………….1377.2.1 Overview of flexible fluorinated g

raphene TENG..............1377.2.1.1 Initial results………………………………….…1387.2.2.1.1 Fabrication of FG-TENG………………1387.2.2.1.2 Working principle of FG-TENG……….1397.2.2.1.3 Electrical output of FG-TENG.………...140References…………………………………………………………….142Appendix A: List of publications………………….……………..........177A

ppendix B: Fabrication process of GFETs with fluorinated graphene (FG) as gate dielectric……........……………………………………….179Appendix C: Fabrication process of GFETs with sandwiched FG…....180Appendix D: Fabrication process of inverted perovskite solar cell with FGr as HTL…………………………………………………………….181Appendi

x E: Fabrication of a Gr-TENG with Al2O3 as the CTL…….182Appendix F: Fabrication of SCG based triboelectric nanogenerator….183Figure captionsFigure 1-1 Exfoliated graphene on SiO2/Si wafer……………………….3Figure 1-2 Epitaxial graphene growth on SiC substrate………………....3Figure 1-3 Growth mechanism of graphe

ne on Cu foil by CVD ……......4Figure 1-4 Wet transfer process of CVD grown graphene…………...….5Figure 1-5 RGO/PET based electrodes as a flexible touch screen.……....6Figure 1-6 Graphene based (a) touch panel (b) touch-screen phone…….7Figure 1-7 Flexible graphene transistors (a) (Top) Optical photograph

of an array of flexible, self-aligned GFETs on PET. (Bottom) The corresponding schematic shows a device layout. (b) Schematic cross-sectional and top views of top-gated graphene flake–based gigahertz transistors. (Left) AFM image of a graphene flake. (Right) Photograph of flexible graphene devices

fabricated on a PI substrate. (c) Cross-sectional schematic of flexible GFETs fabricated using a self-aligned process……8Figure 1-8 The magnitude of power needed for meet certain operation depending critically on the scale and applications………………………10Figure 1-9 Schematic diagrams of PSC in the (a) n-i

-p mesoscopic, (b) n-i-p planar, (c) p-i-n planar, and (d) p-i-n mesoscopic structures………...12Figure 1-10 Schematic illustration of the first TENG...………………...13Figure 1-11 Working modes of the TENG. (a) The vertical contact-separation mode. (b) The lateral sliding mode. (c) The single-electrode mode

. (d) The free-standing mode ………………………………...……14Figure 1-12 Schematic illustration of (a) device fabrication of graphene-based TENGs (b) graphene/EVA/PET-based triboelectric nanogenerators (c) device fabrication of stretchable CG based TENG with electrical output performance……………………………………………………...17

Figure 1-13 Schematic illustration and output performance of bio-waste material based TENG (a) Rice-husk (b) Tea leaves (c) Sun flower powder (SFP) (d) Wheat stalk based TENG………….…………………………18Figure 2-1 Graphene synthesis by LPCVD method……….…………...24Figure 2-2 Schematic diagram of (a) preparation pro

cess of 1L-FG/copper foil (b) Layer by layer assembly method was used for fabricating three-layer graphene over copper foil and then CF4 plasma treatment from top side to form 3L-FG/copper foil…………………….26Figure 2-3 Schematic illustration of fabrication process of F-GFET with FG as gate dielectric ……

……………………………………………….27Figure 2-4 (a) Raman spectra of PG, 1L-FG and 3L-FG after 30 min of CF4 plasma treatment over copper foil. (b) Peak intensities ratio ID/IG and optical transmittance of PG, 1L-FG and 3L-FG. Inset: image of PG and 1L-FG film over PET substrate. (c) Typical Raman spectra of PG, 1L

-FG and 3L-FG on PET substrate. (d) Optical transmittance of PG, 1L-FG and 3L-FG film over PET substrate. The inset shows the optical image of GFETs with FG as gate dielectrics on PET ……….…………30Figure 2-5 XPS analysis result of (a) PG (b) 1L-FG (c) 3L-FG where the C1s core level and several carbon f

luorine components are labeled. The inset shows the fluorine peak (F 1s) at 688.5 eV……………………….32Figure 2-6 (a) Water contact angle of PG, 1L-FG and 3L-FG over PET substrate. (b) The relationship between water contact angle of PG, 1L-FG and 3L-FG and surface-roughness………………………………………33Figure 2-7 (a) I

d vs. Vd of w/o-FG, w/1L-FG and w/3L-FG samples after 30 min of CF4 plasma (b) Id vs. Vg of w/o-FG, w/1L-FG and w/3L-FG samples at a fixed value of drain to source voltage, Vds of 0.5 V (c) Gate capacitance of w/o-FG, w/1L-FG and w/3L-FG samples (d) Gate leakage current of w/o-FG (naturally formed A

l2OX as gate dielectric), w/1L-FG and w/3L-FG samples ……………………………...…………...……...34Figure 2-8 (a) Schematic illustration of bending measurement setup at different bending radius. (i) Device measurement at (i) flat condition (ii) bending radius of 10 mm (iii) 8 mm (iv) 6 mm. Inset shows the photograph

of measurement setup. Change in (b) carrier mobility (c) ION of w/o-FG, w/1L-FG and w/3L-FG samples as a function of bending radius. The symbol ∞ represents the flat condition. Change in (d) carrier mobility (e) ION of w/o-FG, w/1L-FG and w/3L-FG samples as a function of bending cycles (Strain = 1.

56%)…………………………………….38Figure 3-1 Schematic illustration of the flexible top gate graphene field effect transistor with sandwich fluorinated graphene (FG as gate dielectric and substrate passivation layer) ……………………………...…………44Figure 3-2 Raman spectra of (a) PG/PET and PG/FG/PET substrate (b) sandwiche

d FG (FG/PG/FG/PET). Inset showing the optical transmittance of sandwiched FG. (c) HRTEM image for 1L-FG.……………….….…46Figure 3-3 (a) Id vs. Vd of FG/PG/FG device at variable vg (−2 to 2 V). (b) Id vs. Vg of FG/PG/FG. (c) Gate capacitance of FG/PG/FG ….…….48Figure 3-4 Raman spectra of devices under be

nding (a) PG/PET (Inset shows the 2D peak) (b) PG/FG/PET (inset shows the 2D peak) …….…49Figure 3-5 (a) Change in Mobility (b) change in ION of PG/PET and PG/FG/PET as a function of bending radius between bending radii of ∞ to 1.6 mm in tensile mode (c) Change in Mobility (d) Change in ION of PG/PET

and PG/FG/PET as a function of bending cycles. Inset of (c) shows the photograph of F-GFETs with sandwich FG on the PET substrate (e) change in resistance of w/1L-FG, 1L-FG/PG/1L-FG samples as a function of bending radius ………………………...……………….50Figure 3-6 Schematic evolution of proposed strain transf

er mechanism through PG/PET and PG/FG/PET. The inset of PG/PET sample shows the generation of sliding charge due to interfacial sliding between PG and PET ………………………………………………………………….….52Figure 4-1 FGr fabrication and transfer process …………….………....57Figure 4-2 (a) Raman analysis of pristine graphene a

nd the FGr samples after 5, 10, 20, and 30 min of CF4 plasma treatment over Cu foil (b) Raman intensity ratios (I2D/IG and ID/IG) of fluorinated graphene, with respect to the exposure time ……………………………………………60Figure 4-3 SEM images of (a) ITO, (b) ITO/1L-FGr, (c) ITO/2L-FGr, and (d) ITO/3L-FGr …………………

………………………………….61Figure 4-4 XPS analysis of FGr with (a) 5 min (b) 10 min and (c) 20 min of CF4 plasma treatment on the Cu foil (d) The fluorine peak (F1s) of FGr (f) The correlation of the carbon-to-fluorine fraction (C/F) with exposure time and the corresponding carrier concentrations …………….………62Fi

gure 4-5 Tauc plots and UV–Vis absorption spectra of FGr films with CF4 plasma treatment for (a) 5, (b) 10, and (c) 20 min ….………......….63Figure 4-6 WCAs on PEDOT: PSS and 1L, 2L, and 3L FGr samples ...64Figure 4-7 (a) Mechanism of large grain growth of perovskite on a non-wetting surface (b) Top-vi

ew and cross-sectional surface morphologies of perovskites on various HTLs ………………………………...…………65Figure 4-8 XRD of perovskite films on various HTL substrates ….…...66Figure 4-9 UPS spectra of various numbers of FGr layers on ITO: (a) cut-off and (b) valance band spectra …………………………………….….67Figure 4-10

Energy band diagrams of PSCs with (a) PEDOT: PSS, (b) 1L-FGr, (c) 2L-FGr, and (d) 3L-FGr as HTL …………………….…….68Figure 4-11 (a) Steady state PL spectra of PEDOT: PSS/perovskite and FGr/perovskite films. (b) TRPL spectral decay of PEDOT: PSS/perovskite and FGr/perovskite films………………………….……69Figure 4-1

2 (a) Schematic representation of a PSC having an inverted device configuration. (b) Cross-sectional HRTEM image of the ITO/ FGr–perovskite interface………………………………………...………70Figure 4-13 Photovoltaic parameters of PSCs incorporating various HTL substrates: (a) PCE (%), (b) Voc (V), (c) Jsc (mA/cm2), an

d (d) FF (%)....71Figure 4-14 Normalized PCEs of target and control PSCs incorporating various HTL substrates, measured in a N2-filled glove box. (a) Thermal stability at 60 °C (b) Light soaking effect under 1 Sun (c) Stability after several days …………………………………………………………….72Figure 4-15 (a) Schematic r

epresentation of the structure of a flexible PSC on a PET substrate (b) J–V curves of control and target flexible PSCs, measured under both forward and reverse biases. (c) Average PCE of flexible PSCs incorporating PEDOT: PSS and FGr HTLs……….…73Figure 4-16 (a) Normalized averaged PCEs of the flexibl

e PSCs after bending for 10 cycles at various bending radii. (b) Normalized averaged PCEs of the flexible PSCs plotted with respect to the number of bending cycles at a radius of 6 mm ………………………………………………75Figure 4-17 Photovoltaics parameters of flexible PSCs with various HTL substrates: (a) JSC (mA/c

m2), (b) Voc (V), and (c) FF (%) ……………....75Figure 4-18 XRD patterns of perovskite films on PET/ITO/FGr, recorded before and after bending 500 times …………………………………….76Figure 4-19 SEM images of (a) perovskite films/FGr/ITO/PET before bending (b) after bending 500 times (c) perovskite films/PEDOT: PSS/

ITO/PET before bending (d) after bending 500 times ……………….…77Figure 4-20 PL spectra of perovskite films on PET/ITO/FGr, recorded before and after various bending cycles …………………………….…78Figure 5-1 Schematic illustration showing the fabrication process of a flexible Gr-TENG with Al2O3 as the CTL ……………

………………...83Figure 5-2 The Raman spectra of (a) graphene/Al-foil/PET and (b) graphene/Al2O3/Al-foil/PET. The I2D/IG of graphene layers (1L, 3L and 5L) over (c) Al-foil/PET substrate (d) Al2O3/Al-foil/PET substrate …...85Figure 5-3 XRD patterns of (a) graphene/Al-foil/PET and (b) graphene/Al2O3/Al-foi

l/PET ……………………………………………86Figure 5-4 FESEM image of the graphene surface on (a) Al-foil/PET and (b) Al2O3/Al-foil/PET. EDS analysis of (c) graphene/Al-foil/PET and (d) graphene/Al2O3/Al-foil/PET (e) EDS elemental mapping of the graphene/Al2O3/Al-foil/PET presenting C K series, O K series and Al K ser

ies …………………………………………………………….………87Figure 5-5 3D AFM images of (a) 1L-Gr (b) 3L-Gr (c) 5L-Gr on Al foil (d) 1L-Gr (e) 3L-Gr (f) 5L-Gr on Al2O3/Al foil………………….….….89Figure 5-6 Work function of graphene layers on the (a) Al-foil (b) Al2O3/Al-foil substrate by KPFM. Inset showing the surface potential of

graphene layers (1L, 3L and 5L) over Al-foil and Al2O3 substrate (c) energy band diagrams for 1L-Gr, 3L-Gr and 5L-Gr over Al2O3 ……....90Figure 5-7 Schematic illustration of Electronic energy levels of graphene samples and AFM tip without and with electrical contact for three cases: (i) tip and the

1L-Gr (ii) tip and the 3L-Gr and (iii) tip and the 5L-Gr over Al2O3/Al foil/PET……………………………………….…...…………91Figure 5-8 Working mechanism of Gr-TENG with Al2O3 ….….…...…93Figure 5-9 a) ISC and (b) VOC of 1L-, 3L- and 5L-Gr-TENGs without Al2O3 CTL (c) Sheet resistance of graphene as a function of number

of layers ………………………………...…...…………………………….95Figure 5-10 Electrical output of the Gr-TENG with Al2O3 CTL: (a) ISC and (b) VOC of 1L-, 3L- and 5L-Gr. Magnification of the (c) ISC and (d) VOC of the 3L-Gr-TENG with Al2O3 as the CTL. Average mean (e) ISC and (f) VOC generated by pristine Gr-TENGs (1L, 3L

and 5L) and Gr-TENGs (1L, 3L and 5L) with Al2O3 CTL. Error bars indicate standard deviations for 4 sets of data points ……………...…………….….…......96Figure 5-11 (a) CV of Al/Al2O3/3L-Gr/Al at 100 kHz and 1 MHz (b) CV hysteresis of 3L-Gr-TENG with Al2O3 as CTL with different sweeping voltages (c) Surface

charge density of graphene (1L, 3L and 5L)-based TENG with and without Al2O3 as CTL ………………………………...98Figure 5-12 Circuit diagram of output (a) VOC and (b) ISC measurement of 3L-Gr TENG with Al2O3 CTL as a function of different resistors as external loads. Variation in VOC and ISC w.r.t different re

sistors as external loads of (c) 3L-Gr TENG with Al2O3 CTL (d) 3L-Gr TENG without Al2O3 CTL. Relationship between electrical output power and external loading resistance (e) 3L-Gr TENG with Al2O3 CTL (f) 3L-Gr TENG without Al2O3 CTL…………………………………….………………...99Figure 5-13 (a)Electrical stability and du

rability of the 3L-Gr TENG with Al2O3 (b) Schematic illustrations showing the charge-trapping mechanism of 3L-Gr-TENG without and with Al2O3 charge trapping layer ………101Figure 5-14 (a) Photograph showing 20 LEDs being powered (b) Circuit diagram of bridge rectifier (c) Charging curves of capacitors

with various capacitances (d) Photograph of powering a timer …….………………102Figure 6-1 The schematic diagram of the fabrication process for SCG powder based TENG ……………………………………………….….108Figure 6-2 The schematic diagram of the fabrication process for SCG thin-film based TENG via thermal evaporation meth

od ………………109Figure 6-3 FESEM image of (a) SCG powder (inset image illustrates the high magnification of SCG powder) (b) SCG thin-film/Al foil/PET (inset image illustrates the high magnification of SCG thin-film). EDS of the (c) SCG powder (d) SCG thin-film/Al foil/PET…………………………. 112Figure 6-4 Raman

spectra analysis (a) pristine SCG powder (b) SCG thin-film/Al foil/PET. XRD patterns of (c) SCG powder (d) SCG thin film with different thickness ……………………………………… ……….115Figure 6-5 FTIR analysis of the (a) pristine SCG powder sample (b) SCG thin film………………………………………………………………...116Figure 6-6 3D AFM ima

ge of SCG thin-film with various thickness (a) 50 nm (b)100 nm and (c) 200 nm……………………………………...117Figure 6-7 Schematic illustration of working principle of SCG thin-film based TENG …………………………………………………………...119Figure 6-8 Finite element simulation of the generated voltage difference for SCG thin-film b

ased TENG based on the contact and separation between SCG thin film and PTFE …………….……………………….120Figure 6-9 (a) The setup for electrical property testing, which including a Keithley 6514 system electrometer and linear motor. Electrical output (b) ISC (c) VOC of TENGs based on different friction pairs

for checking the triboelectric polarity of SCG…………………………………………...123Figure 6-10 Electrical measurement of (a) ISC and (b) VOC of the SCG thin-film based TENG. Mean value of (d) ISC (e) VOC and (f) Output power density of the pristine SCG powder and thermal deposited SCG thin-film based TENG. ...………

………………………………………125Figure 6-11 (a) Schematic illustration of KPFM for measuring the work function. (b) Surface potential images of SCG thin film with various thickness (50 nm, 100 nm and 200 nm). (c) Surface potential and (d) Work function vs SCG thin film with various thickness (50 nm, 100 nm and 20

0 nm).………….……………………………………………….128Figure 6-12 (a) Isc and (b) Voc of SCG thin film based TENG under different contact frequencies (c) Isc and (d) Voc of SCG thin film based TENG under different separation distance…………………………….129Figure 6-13 Electrical response (a) ISC (b) VOC of pristine SCG powder an

d (c) ISC (d) VOC of SCG thin-film based TENG with respect to different relative humidity (35-85% RH) …………………………….131Figure 6-14 Electrical stability and durability test of the output performance of (a) pristine SCG powder based TENG (b) SCG thin-film based TENG……………………………………………………………132Figure 6-15

Applications of the SCG thin film based TENG as a power supply: (a) Circuit diagram of the bridge-rectifier for charging a capacitor (b) Charging curves of capacitors with various capacitances (0.1, 2.2 and 3.3 µF) (c) Photograph of powering a timer…………………...………133Figure 7-1 Schematic illustration o

f FG based TENG…….….……….139Figure 7-2 Working mechanism of FG based TENG…………………140Figure 7-3 Electrical output of FG-TENG: (a) Isc and (b) Voc …….….141Table captionsTable 2-1 Comparison of flexible G-FETs on/off ratio of our work with other’s work…………………………………………………...………...40Table 3-1 Summary of th

e electrical and mechanical performance of flexible w/o-FG, w/ 1L-FG, w/3L-FG and sandwich FG (FG/PG/FG) samples......................................................................................................52Table 3.2: Comparison of the electrical and mechanical performance of sandwich FG ba

sed F-GFET with previous F-GFET with different gate dielectrics……………………………………………………….………53Table 4-1 Best photovoltaic performance from control and target devices prepared on rigid and flexible substrates……………………………......74Table 5-1 EDS elemental analysis of graphene over Al-foil/PET and Al2O3/Al-foi

l/PET ………………………………………………………88Table 5-2 Comparison of electrical output performance of Gr-TENGs with and without Al2O3 CTL samples used in this study………………103Table 6-1 EDS elemental analysis of SCG-Powder and SCG thin film /Al foil/PET………………………………………………………………...113Table 6-2 Comparison of electrical o

utput performance of SCG-TENGs samples used in this study……………………………………………...126